EMBC Special Issue: Calibrated Uncertainty for Trustworthy Clinical Gait Analysis Using Probabilistic Multiview Markerless Motion Capture
Authors
Seth Donahue Irina Djuraskovic Kunal Shah Fabian Sinz Ross Chafetz R. James Cotton
Abstract
Video-based human movement analysis holds potential for movement assessment in clinical practice and research. However, the clinical implementation and trust of multi-view markerless motion capture (MMMC) require that, in addition to being accurate, these systems produce reliable confidence intervals to indicate how accurate they are for any individual. Building on our prior work utilizing variational inference to estimate joint angle posterior distributions, this study evaluates the calibration and reliability of a probabilistic MMMC method. We analyzed data from 68 participants across two institutions, validating the model against an instrumented walkway and standard marker-based motion capture. We measured the calibration of the confidence intervals using the Expected Calibration Error (ECE). The model demonstrated reliable calibration, yielding ECE values generally < 0.1 for both step and stride length and bias-corrected gait kinematics. We observed a median step and stride length error of ~16 mm and ~12 mm respectively, with median bias-corrected kinematic errors ranging from 1.5 to 3.8 degrees across lower extremity joints. Consistent with the calibrated ECE, the magnitude of the model's predicted uncertainty correlated strongly with observed error measures. These findings indicate that, as designed, the probabilistic model reconstruction quantifies epistemic uncertainty, allowing it to identify unreliable outputs without the need for concurrent ground-truth instrumentation.
Paper Summary
Problem
Key Innovation
Practical Impact
Analogy / Intuitive Explanation
Paper Information
2601.22412v1